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An Immersed-Boundary Finite-Volume Method for Simulation of 
Heat Transfer in Complex Geometries 

Jungwoo Kim, Haecheon Choi* 
School o f  Mechanical and Aerospace Engineering, Seoul National University, 

Seoul 151- 744, Korea 

An immersed boundary method for solving the Navier-Stokes and thermal energy equations 

is developed to compute the heat transfer over or inside the complex geometries in the Cartesian 

or cylindrical coordinates by introducing the momentum forcing, mass source/sink, and heat 

source/sink. The present method is based on the finite volume approach on a staggered mesh 

together with a fractional step method. The method of applying the momentum forcing and mass 

source/sink to satisfy the no-slip condition on the body surface is explained in detail in Kim, 

Kim and Choi (2001, Journal of Computational Physics). In this paper, the heat source/sink 

is introduced on the body surface or inside the body to satisfy the iso-thermal or iso-heat-flux 

condition on the immersed boundary. The present method is applied to three different problems : 

forced convection around a circular cylinder, mixed convection around a pair of circular cylin- 

ders, and forced convection around a main cylinder with a secondary small cylinder. The results 

show good agreements with those obtained by previous experiments and numerical simulations, 

verifying the accuracy of the present method. 

Key Words:Immersed Boundary Method, Heat Transfer, Finite Volume Method, Complex 
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I. Introduct ion  

The ability to handle complex geometries has 

been one of the main issues in computational 

fluid dynamics because most engineering pro- 

blems encounter difficulties in handling them. So 

far, two different approaches of simulating com- 

plex flow have been taken: unstructured grid 

method and immersed boundary method. In the 

latter method (Peskin, 1982; Goldstein et al., 

1993; Saiki and Biringen, 1996; Mohd-Yusof, 

1997; Fadlun et al., 2000; Kim et al. 2001 ; Lee, 

2003), a body in the flow field is considered as a 

kind of momentum forcing in the Navier-Stokes 
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equations rather than a real body, and therefore 

flow over a complex geometry can be easily 

handled with orthogonal (Cartesian or cylin- 

drical) grids which generally do not coincide 

with the body surface. The main advantages of 

the immersed boundary method are memory and 

CPU savings and easy grid generation compared 

to the unstructured grid method. Even moving- 

body problems can be handled with the immers- 

ed boundary method without regenerating grids 

in time, unlike the unstructured grid method. 

Recently, Kim et a1.(2001) suggested a modified 

immersed boundary method that introduces the 

momentum forcing in the Navier-Stokes equa- 

tions and the mass source/sink in the continuity 

equation to satisfy the no-slip condition on the 

immersed boundary and the mass conservation 

for the cell containing the immersed boundary. 

Here the momentum forcing and mass source/ 

sink are applied only on the body surface or 

inside the body. 
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So far, immersed boundary methods have been 

applied mostly to the flow field, but little atten- 

tion has been paid to the passive-scalar field. 

Recently, using an immersed boundary method, 

Fadlun et a1.(2000) computed the passive scalar 

and compared the simulation results to those 

from the previous experiments. As they reported, 

however, the adiabatic condition on the immers- 

ed boundary was hard to accurately be satisfied 

using their method. 

In the present study, we suggest an immersed 

boundary method, where the thermal boundary 

conditions such as the iso-thermal and iso-heat-  

flux conditions are accurately satisfied on the 

immersed boundary by applying the heat source/  

sink on the boundary or inside the body. The 

present method is based on a finite volume ap- 

proach on a staggered mesh together with a 

fractional step method. To verify the accuracy of 

the present method, three different heat-transfer 

problems are considered and the results are 

presented in this paper. 

2. Numerical  Method 

2.1 Governing equat ions  and t ime integra-  

tion 

Following Kim et al.(2001), both the mo- 

mentum forcing and mass source/sink are ap- 

plied on the body surface or inside the body in 

order to satisfy the no-s l ip  condition on the 

immersed boundary and the mass conservation 

for the cell containing the immersed boundary. 

In the present study, the heat source/sink is ap- 

plied to satisfy the thermal boundary conditions 

such as the iso-thermal and iso-heat-f lux condi- 

tions on the immersed boundary. As shown in 

Fig. 1, the momentum forcing (f i) ,  mass source/  

sink (q) and heat source/sink (h) are applied 

on the immersed boundary or inside the body 

to properly represent the immersed body. The 
grid points for the momentum forcing are locat- 

ed in a staggered fashion like the velocity com- 

ponents defined on a staggered grid. Also, the 

grid points for the mass and heat source/sink are 

located at the cell centers like the pressure and 
temperature. Therefore, the governing equations 

Fig. 1 

° 
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i11  ° 
Schematic diagram for the immersed boun- 
dary method. The shaded area denotes the 
body 

for unsteady incompressible viscous flow and 

heat transfer become 
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where x; 's  are the Cartesian coordinates, u f s  

are the corresponding velocity components, p 

is the pressure and 0 is the temperature. All  the 

variables are nondimensionalized by the charac- 

teristic velocity, length and temperature. Re is 

the Reynolds number, Pr is the Prandtl  number 

and Gr is the Grashof  number. 

A second-order  semi-implicit  time advance- 

ment scheme (a thi rd-order  Runge-Kut ta  method 

(RK3) for the convection terms and the Crank-  

Nicolson method for the diffusion terms) is used 

for the time integration of  Eqs. ( l ) ,  (2) and (3). 

Also, we use the fractional step method where a 

pseudo-pressure is used to correct the velocity 

field so that the continuity equation is satisfied at 

each computational  time step. Then, Eqs. ( l ) -  (3) 
become 
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02¢  ~ _ 1 / ~ k \  
t~x,Ox, 2a, A t  ~ O x / - - q  ) (5) 

~bk (6) 
u i~ :u f - -2a*At  Oxi 

f f= f f_ ,+qbk  a, A t  ~ k  (7) 
Re Ox~Ox~ 

0~--0 ~-~_ ak L(O ~) a~ L(Ok_~) 
A t  RePr + R---~P~-r (8) 

- -  ;~kN ( 0 "-~) - -  p ~ N  (0k-2)  + h k 

where L()=o~()/Oxjc~xj ,  N O  =tgz6()/oax~, z~i is 

the intermediate velocity, ~b is the pseudo-pres- 

sure, A t  and k ( =  1, 2, 3) are the computational  

time step and substep's index, respectively, ak, 

?% p~ are the coefficients of  RK3 (a,~-----4/15, 

7,----8/15, p a = 0 ;  az=l/15, y2=5/12, p 2 = - - 1 7 /  

60; a s = l / 6 ,  93----3/4, p ~ = - - 5 / 1 2 ) .  Here, f~, q 

and h are defined inside the immersed body or 

on the cell containing the immersed boundary, 

and zero elsewhere. 

The method of determining f~ and q is fully 

described in Kim et al.(2001). Thus, in this 

paper, we present the procedure of  determining 

h of  satisfying the iso-thermal and iso-heat-  

flux conditions on the immersed boundary. 

2.2 Iso-thermal  condition 
To obtain 0 k from Eq. (8). the heat source/  

sink h k must be determined in advance such 

that t9 k satisfies the iso-thermal condition on the 

immersed boundary. In order to obtain h k from 

the velocity and temperature at k - I  and k - 2  
steps, we integrate Eq. (3) explicitly in time 

(RK3 for the convection terms and the forward 

Euler method for the diffusion terms) near the 

immersed boundary, and the resulting tempera- 

ture is denoted as ~k : 

Ok--Ok--'__ 2ak L(Ok-X) 
A t  RePr (9) 

- r , a V  (0 ~-~) - o~N (0 ~-2) + h  ~ 

Then, h k becomes 

h ~ =  O ~ - - 0  ~-~ 2a ,  L(0~-~) 
At  RePr (10) 

+ r,Ar ( 0 ~-~) + p~N ( 0 ~-2) 

where ~9~(=0  ~) is the temperature at the heat 

source/sink location that we want to obtain by 

applying h k. When the location for h k coin- 

cides with the immersed boundary, 0 k is the 

temperature given by the iso-thermal condition 

on the boundary. However, in general the loca- 

tion for h k does not coincide with the boundary, 

and thus an interpolation from neighboring tem- 

peratures should be required to obtain O k at the 

heat source/sink location. Since the neighboring 

temperatures should be the ones at the k - th  step, 

they (0 )  are also obtained from Eq. (9) with 

h~=0.  

For  the interpolation scheme, we use second- 

order bilinear and linear interpolations as shown 

in Figs. 2(a) and 2(b) ,  respectively• Here, /°1 is 

the location at which the iso-thermal condition 

should be satisfied, and O1, 0-2 (or O2), 0"3 and 

04 are the temperatures nearby P~. P~ is defined 

as the cross-sectional point between the immers- 

ed boundary and the wal l -normal  line passing 

through the point where Ox is defined. When all 

the temperature points (0"-2, 0"-3 and 04) except O1 
are outside the body (Fig. 2 (a ) ) ,  O1 is deter- 

mined from a bilinear interpolation. However, 

when O~ and O2 are inside the immersed body as 

shown in Fig. 2(b) ,  O~ cannot be determined 

from the bilinear interpolation because the un- 

known O~ is coupled with another unknown 

Oz. In this case, we obtain O~ from the linear 

interpolation between the temperature at /)2 

and 04, where /°2 is the cross-sectional point 

between the immersed boundary and the line 

connecting O1 and 04. 

\ 

N ~ d  

(a) 

Fig. 2 

~ i ~  - ~  

(b) 

Schematic diagram for the interpolation sc- 
heme in the case of iso-thermal condition : 
(a) Bilinear interpolation : (b) Linear inter- 
polation. The shaded area denotes the body 
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We now explain the linear and bilinear inter- 

polat ion schemes in more detail in Figs. 3 and 4, 

respectively. To simplify the problem, the case of 

0 = 0  at the boundary is considered and the case 

of 0:4=0 at the boundary can be easily extended 

from that of 0 = 0 .  First, we consider the follow- 

ing second-order linear interpolation (Fig. 3) 

o ~ = - a b  (il) 

where C '  is defined such that C'Pz=P2C=I. 
For 0 < l < y a  (Fig. 3 (a ) ) ,  0~, is obtained from 

a linear interpolation between t~,~ and the tem- 

perature condition at P~, whereas for ya<l<yB 
(Fig. 3 (b) ) ,  t~, is obtained from 0,~ and 0~. 

That is, 

Fig. 3 

Y Y 
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(a) (b) 

Linear interpolation scheme in the case of 
iso-thermal condition : (a) 0<l~_ya ;  (b) 
ya<l~_yn. Here, C is the heat source/sink 
point, and C' is defined such that C'Pz = 
PzC=l. A and B are, respectively, the first 
and second temperature points (cell centers) 
outside the body. The shaded area denotes 
the body 

Fig. 4 

\ 

Y=Y' ~ i  .... 4"a;'"" 

X = X I  X = X p ~  X ~ X 3  

' X  

Bilinear interpolation scheme in the case 
of iso-thermal condition. The shaded area 
denotes the body 

1 @~= - ~ a  t~ for 0 < l < y a  
(12) 

(ys-l) 0~+ ( l -ya )  0~ for YA< l<Yn 
Yn-Ya 

This linear interpolation procedure is same as 

that used for the velocity components to satisfy 

the no-sl ip condition in Kim et al. (2001). When 

O~=--(l/ya) O~ is used even for ya<l~_yn, 
one may fail to get a stable solution due to a very 

large value of l/Ya from the grid distribution in 

complex geometries. 

Next, in the case of Fig. 2(a) ,  the second- 

order bilincar interpolation is used as follows 

(see Fig. 4): 

@~----- [ a ( 1 - B )  tT~+ ( 1 - a )  (1--/~) 0~' 
+ (1 - -a )  l~Oh4]/a~ (13) 

where a=(x3--xe,)/(xa--xx), f l=(y2--yei)/  
(Y2--Yl), and the iso-thermal boundary condi- 

tion at /91 is used. 

Once 0~' is determined, h k of  satisfying the 

iso-thermal condition is obtained from Eq. (10). 

2.3 I s o - h e a t - f l u x  condit ion 

In the case of iso-heat-f lux condition, the 

interpolation procedure for determining O (or 

O k) is different from that for the iso-thermal 

condition, because the iso-heat-flux condition 

requires the wal l -normal  derivative of tempera- 

ture on the immersed boundary. 

Figure 5 shows the schematic diagram for the 

interpolation scheme used in the present study. 

Here, Px is the point at which the iso-heat-  

flux condition should be satisfied, and O1, 02 

(or 02), t~3 and t~4 (or 694) are the temperatures 
nearby P~. /91 is defined as the cross-sectional 

point between the immersed boundary and the 

wal l -normal  line passing through the point where 

@~ is defined. Also, t~s is the temperature at the 
cross-sectional point between the line connecting 

the cell centers and the wal l -normal  line as shown 

in Fig. 5. Then, the heat flux q" on the immersed 

boundary is defined as q"=--x(Os--OO/An, 
where tc is the conduction coefficient, A n  is the 

distance between the points defined for Ox and t~s. 
Therefore, O~ is given as 
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Fig. 5 Schematic diagram for the interpolation sche- 
me in the case of iso-heat-flux condition 

(9~:O~ + q"An/ x (14) 

where t~ is obtained from the linear interpola- 

tion between 0"z k and O~ or O~ and 0"~ (Fig. 5). 

Once 0~ is obtained from Eq. (14), the heat 

source/sink h k of satisfying the iso-heat-flux 

condition on the immersed boundary is deter- 

mined from Eq. (10). 

3. Numerical Examples 

3.1 Forced convection around a circular 

cylinder 

Forced convection around a circular cylinder 

is simulated to verify the accuracy of the present 

immersed boundary method ( G r = 0  in Eq. (1)). 

Both the iso-thermal and iso-heat-flux condi- 

tions on the immersed boundary are considered. 

The size of the computational domain is - - 50<  

x /d<20  and - 5 0 < y / d < 5 0 ,  where x and y 

are the streamwise and transverse directions, re- 

spectively, and d is the diameter of a circular 

cylinder. The Dirichlet boundary conditions, u =  

u~., v = 0 ,  and 0=0~ ,  are used at the inflow and 

farfield boundaries, and the convective boundary 

conditions, Oui/Ot + cOuff Ox=O and O0/Ot + 
cO0/Ox=O are used at the outflow boundary, 

where u and v are the velocity components in 

x and y directions, respectively, u~ is the free- 

stream velocity, 00~ is the free-stream tempera- 

Table 1 Mean Nusselt number for flow over a cir- 
cular cylinder iso-thermal condition) 

Present 

Eckert and Soehngen 
(1952) 

Re Nu 

3.23 40 

100 5.13 

120 5.62 

40 3.48 

100 5.23 

120 5.69 

ture, and c is the space-averaged streamwise 

velocity at the exit. At the cylinder surface, u = 

v = 0 ,  8=0w, for the iso-thermal condition 

and -IcO0/an=q " for the iso-heat-flux condi- 

tion, where 0w is the wall temperature, q" is 

the wall heat flux and n is the surface-normal 

direction. The numbers of grid points used are 

390(x) X224(y) and thirty grid points in each 

direction are uniformly distributed within the 

cylinder. We perform the computations at three 

different Reynolds numbers (40, 100 and 120) 

based on the free-stream velocity and diameter. In 

this paper, air is chosen as a working fluid, so 

that the Prandtl number is 0.7. 

Table 1 shows the mean Nusselt number (total 

heat flux) in the case of iso-thermal condition 

on the cylinder surface, where the total heat 

flux is obtained from the integration of the heat 

source/sink over the body and is time-averaged 

for Re=100 and 120. The present result agrees 

well with the experimental one by Eckert and 

Soehngen (1952). 

Figure 6 shows the contours of the instantan- 

eous temperature for both the iso-thermal and iso- 

heat-flux conditions. The temperature field is 

symmetric about the streamwise axis at Re=40,  

whereas alternating patterns take place due to the 

vortex shedding at Re=100 and 120. Differences 

in the contours are due to the different surface 

conditions. Fig. 6 indicates that the temperature 

field is well captured by the present immersed 

boundary method. 
Figure 7 shows the distribution of the Nusselt 

number (Nu=h'D/x,  h' is the convection heat 

transfer coefficient) along the cylinder surface at 

R e : 1 2 0  in the case of iso-thermal condition, 
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together with the experimental result by Eckert 

and Soehngen (1952). Here, the heat flux at the 

immersed boundary (i.e. the cylinder surface) is 

obtained as was done in Fig. 5. Since the grid 

lines do not coincide with the immersed boun- 

dary, one can easily expect some non-smooth 

patterns in the distribution of N u  as shown in 

Fig. 7. Nevertheless, the present immersed boun- 

dary method captures the heat flux at the cylinder 

surface very well and shows an excellent agree- 

ment with the experimental result. 

(a) 

(b) 

(c) 
Fig. 6 Contours of the instantaneous temperature: 

(a) Re=40;  (b) Re=100; (c) Re=120. Left 
figures correspond to the cases of iso-thermal 
condition and right ones do the cases of iso- 
heat-flux condition. Contours of the tem- 

perature are (O--Ow)/(O~--Ow) : 0 ~  1 and /c 
(O®--O)/q"D=O--0.3 for the iso-thermal 
and iso-heat-flux conditions, respectively 

1 2  ~ + + ~  

i0[ ++ +'++.+++ 

Nu 

0 

Fig. 7 

o + + +  

t +  
+ ~  

+ 

+ • ++ 

. . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  J . . . . . . . . .  i . . . . . . . . .  J . . . . . . . .  , 

30 60 90 x2o xso ~so 

a ( degree ) 

Distribution of the Nusselt number along 
the cylinder surface at Re----120 (iso-thermal 
condition): +, Present; 0 ,  Eckert and 
Soehngen (1952) 

3.2 Mixed convection around a pair of cir- 

cular cylinders 
In this section, we perform the computations 

for flow and temperature fields around a pair 

of circular cylinders using a Cartesian mesh. 

Figure 8 shows the geometry and grid system used 

in the present computations, where g is the 

gravitational acceleration, g * ( = 0 . 7 d )  is the 

distance between the cylinders, and d is the 

cylinder diameter. The free-stream direction is 

opposite to that of the gravity. The size of the 

computational domain is -- 50< x / d  < 20, - 50 < 

y /d<50 .  The Dirichlet boundary conditions, 

u=u®, v = 0  and 0=0.o, are used at the inflow 

and farfield boundaries, and the convective 

boundary conditions used in Sec. 3.1 are given at 

the outflow boundary. At the cylinder surface 

(immersed boundary),  the Dirichlet boundary 

conditions, u = v : 0  and O=Ow are used. The 

numbers of grid points are 280(x) × 192(y) and 

thirty grid points in each direction are uniformly 

distributed within the cylinder. Computations are 

performed for Re=100, Gr=1000,  5000 and 

10000, and Pr=0.7 where Gr=gl~(Ow-Oo~)dS/ 
u 2, /~ is the coefficient of volumetric thermal 

expansion, and u is the kinematic viscosity. 

Table 2 shows the drag and lift coefficients 

(Co and Cz) and the Nusselt number (Nu)  for 

one cylinder, together with the computational 

q 

Fig. 8 

r ' ! ! ! ! !  i !i . . . . .  : : : : :  

ii 
y , v  : 'i[ii[i 

,00d iiiiii[ U . . . . . . .  

i iii 
~i i ! ! !  

"iiiii l l  
l l I I l l ' ,  

- 7 0 d  , " '  . . . .  

(a) (b) 
(a) Coordinate system ; (b) Mesh near a pair 
of cylinders. Here, every other grid lines are 
shown 
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Table 2 Drag and lift coefficients and Nusselt number for one cylinder (flow over a pair of circular cylinders) 

Present 

Song and Chang (1991) 

Re 

100 

100 

Pr 

0.7 

0.7 

Gr C~ 

10000 

CL Nu 

1000 1.76 0.39 5.35 

5000 3.02 0.46 5.84 

4.36 0.42 6.36 

1000 1.80 0.44 5.50 

5000 3.05 0.47 5.75 

10000 4.21 0.44 6.16 

Fig. 9 

(a) 

(b) 

(c) 
Temperature contours near a pair of circular 
cylinders (Re=100): (a) Gr=1000; (b) 
Gr=5000; (c) Gr=10000 

results by Song and Chang (1991). In the case 

of  Gr=1000,  flow is unsteady, and thus Co, CL, 

Nu are the t ime-averaged values. As shown, the 

present results agree well with those by Song and 

Chang (1991). 
Fig. 9 shows the contours of the temperature 

for Gr=1000,  5000 and I0000 at Re----100. The 

temperature field changes from unsteady (Gr = 
1000) to steady (Gr=5000  and 10000) due to the 
buoyancy force, which agrees well with the nu- 

merical results by Song and Chang (1991). 

3.3 Forced convection around a main cylin- 

der with a secondary small  cylinder 

In this section, we simulate forced convection 

around the main and secondary cylinders at R e =  
80 and Pr=0 .7  ( G r = 0 ) .  The diameter of the 

secondary cylinder is ds = d / 3  and the secondary 

U~ 

secondary 
cylinder 

Y'. V Q U  

maln 

cylinder 

I£ 

: : : : : :=::=::: :=:=:=::: :=::: : : : : :=:=::=::: : : : : : : : : : : : : : : : : : : : : : : : : :  

iiiiliiliiliiiiliiiiiiiiiiiiii!iliiii! 
I ! ! ; : I : I I [ I : I - = I I I I [ I I I I I £11111EE I£E IE  m : : : ; I :mm: I :m= l  

!-i 'Z_iii-i i! i i i! i i! i! i i i i i i i i i i! i i i i i i i i i i i i i i i i i i~iii i~iii i i i i i 

iiiiiiiiiiiii!iJ!iiii!iiii!iiiiiiiiiii 
! ~ i i i i i i i i i i i i ! i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i  

i!ii!!!!i;iiiiiliiiiiiii!!iiii!ii!i!i 
iiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiii 

, 7 0 d  ' 
(a) (b) 

Fig. 10 (a) Coordinate system ; (b) Mesh near the 
two cylinders for the case of (x=, Ys) = (2d, 
0.5d) (every other grid lines are shown here 
for the mesh of 450(x) X288(y).) 

cylinder locates at (x=, y=) = (2d, 0.5d) or (2d,  

1 d ) ,  where d is the diameter of the main cylinder. 

This flow configuration was first considered ex- 

perimentally by Strykowski and Sreenivasan 

(1990) on the purpose of modifying the vortex 

shedding and drag. 
Figure 10 shows the geometry and grid sys- 

tem. The size of the computat ional  domain is 
- 5 0 < x / d < 2 0  and - 5 0 < y / d < 5 0 ,  and the 

same boundary conditions as in Sec. 3.2 are 

used. Two different meshes, 450 (x) X 288 (y) and 

900(x) X576(y) ,  are used for the grid-indepen- 

dent solution. For  the mesh of  450(x) x 2 8 8 ( y ) ,  

grids of 50X50 are uniformly distributed within 
the main cylinder, and about 16X16 grid points 

are uniformly distributed within the secondary 
cylinder. Twice the grid points are used within 

the main and secondary cylinders for the mesh of 
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Table 3 Drag coefficients, lift-coefficient amplitudes and Nusseh numbers for flow over a main cylinder with 
a secondary small cylinder 

Without secondary 
cylinder 

(xs, y~)= (2d, 0.5d) 

(x,, y s ) = ( 2 d ,  ld)  

Present 
(450(x) ×288(y)) 

State 

Park et al. 
(1998) 

unsteady 

Eckert and Soehngen 
(1952) unsteady 

Strykowski and Sreenivasan 
(1990) unsteady 

unsteady 

Present 
(450(x) X288(y)) 

Strykowski and Sreenivasan 
(1990) 

unsteady 

Present 
(900 (x) X 576 (y)) unsteady 

unsteady 

Present 
(450 (x) x 288 (y)) 

Strykowski and Sreenivasan 
(1990) 

steady 

Present 
(900 (x) × 576 (y)) steady 

steady 

C~ C; Co~ C;~ Nu 

1.37 0.241 4.56 

4.64 

1.35 0.245 

1.24 0.0483 0.129 0.0644 4.35 

1.24 0.0482 0.130 0.0645 4.36 

1.17 0 0.461 0 4.36 

1.17 0 0.461 0 4.36 

Nus 

1.19 

1.19 

2.34 

2.34 

900(x) X576(y) .  In this study, we consider two 

different locations for the secondary cyl inder:  

(xs, y s ) = ( 2 d ,  0.5d) and (2d,  l d ) .  Here, the 
first and the latter produce, respectively, main- 

tenance and suppression of vortex shedding ac- 

cording to the experiments by Strykowski and 

Sreenivasan (1990). 

Table 3 shows the drag coefficients, lift-co- 

efficient amplitudes and the Nusselt numbers, 

together with those from the previous studies 

(Eckert and Soehngen, 1952; Strykowski and 

Sreenivasan, 1990; Park et al., 1998). Here CD, 
C~. and N u  are the drag coefficient, lift-coeffi- 
cient amplitude and the Nusselt number of the 

main cylinder, respectively, and CDs, C'Ls and 

Nun are those of the secondary cylinder. These 

values are normalized by u.~ and d.  As shown in 

Table 3, the present results are in good agree- 

ments with the previous experimental (Eckert and 

Soehngen, 1952; Strykowski and Sreenivasan, 

1990) and numerical (Park et al., 1998) results. 
As shown in Table 3, the drag coefficients, lift- 

Fig. 11 

(a) 

(b) 

(c) 
Temperature contours behind a main cylin- 
der with a secondary small cylinder (Re= 
80): (a) Without secondary cylinder; (b) 
(xs, Ys) = (2d, 0.5d) ; (c) (Xs, y~) = (2d, 1 d) 

coefficient amplitudes and the Nusselt numbers 

are nearly the same for both grids, indicating that 
the solutions are grid-independent.  
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With the secondary cylinder, the drag and heat 

transfer on the main cylinder are reduced. How- 

ever, the total drag (=Co+Cz3~) is nearly the 

same for (xs, Ys)=  (2d, 0.5d) and is increased 

for (2d, l d ) .  The total heat fluxes ( = N u +  

Nus)  are increased for both cases. On the other 

hand, the lift fluctuations are reduced and com- 

pletely eliminated for (Xs, Ys)=(2d,  0.5d) and 

(2d, l d ) ,  respectively, due to the delay or com- 

plete suppression of vortex shedding with the 

secondary cylinder (see Fig. 11). These behaviors 

are similar to those reported in Strykowski and 

Sreenivasan (1990). Fig. 11 clearly shows that the 

present immersed boundary method accurately 

captures the thermal field. 

4. Summary 

In the present study, an immersed boundary 

method was presented for the simulation of 

heat transfer inside/over a complex geometry by 

introducing the heat source/sink as well as both 

the momentum forcing and mass source/sink. 

The present method was based on a finite volume 

approach on a staggered mesh together with a 

fractional step method. The heat source/sink was 

applied on the immersed boundary or inside the 

body to satisfy the thermal boundary conditions 

(iso-thermal and iso-heat-flux conditions) on 

the immersed boundary. In the present method, 

accurate interpolation schemes were developed 

to satisfy the iso-thermal and iso-heat-f lux con- 

ditions on the immersed boundary. 

Three different heat transfer problems (forced 

convection around a circular cylinder, mixed con- 

vection around a pair of circular cylinders, and 

forced convection around a main cylinder with a 

secondary small cylinder) were solved using the 

present immersed boundary method. The simula- 

tion results agreed well with the previous numer- 

ical and experimental ones, verifying the accuracy 

of the present immersed boundary method. 
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